(OMP
110

More Practice with
Recursive Functions

Reminders:

e Tutoring @5-7PM today and tomorrow

e Virtual review session tomorrow (11/21) at
/pm
o Link on the site’s agenda!

Welcome to Dog110!

The COMP110 dogs went to daycare and each dog’s behavior was scored on a
scale of 1-10. If all 3 dogs scored at least an 8, we’ll pet them 110 times. Let’s
write a recursive function to see if all dogs in the list were good today!

=N

L0

L

OPUTER S(-pe

Welcome to Dog110!

The COMP110 dogs went to daycare and each dog’s behavior was scored on a
scale of 1-10. If all 3 dogs scored at least an 8, we’ll pet them 110 times. Let’s
write a recursive function to see if all dogs in the list were good today!

3 parameters: pack: list[dict[str, str]] = [
® scores: list[dict[str, str]]

_ = _) F;! {"name": "Nelli", "score": "10"},
o list of dictionaries of dogs’ names and scores o
e thresh: int g {"name": "Ada", '"score": "9"},
o Threshold we're using to determine if a dog EW ("name": "Pip", "score": "7"},
was good .
e idx: int 1

o Index of dog of interest for the function call

Example usage:

print(all_good (scores=pack, thresh=8, idx=0)) would return False

print(all good (scores=pack, thresh=7, idx=0)) would return True

all good Algorithm

Let’s write a recursive function to see if all dogs in the list were good today!

Example usage:

print(all_good (scores=pack, thresh=8, idx=0)) would return False

print(all _good (scores=pack, thresh=7, idx=0)) would return True

Conceptually, what will our base case be?

What will our recursive case be?

What is an edge case for this function? How could we account for it?

Visualizing recursive calls to all good

all good(scores=pack, thresh=8, idx=0) returns False

scores[0] ["score"] >= thresh. Good dog, Nelli!
Now, let’s check the next dict in the list...

return all good(scores, thresh, idx + 1)
return all good(scores, thresh, 1)

return False scores[1l] ["score"] >= thresh. Good dog, Ada!
\ Now, let's check the next dict in the list...

[

VaI e return all good(scores, thresh, idx + 1)\
ues return all good(scores, thresh, 2)

thresh = 8 return False

idx = 2 scores[2] ["score"] < thresh...

|
pack: list[dict[str, str]] = [not all dogs LS gOOd'

{"name": "Nelli", "score": "10"},

A)
{"name": "Ada", "score": "9"}, return False

{ "name" E " Pip" , "score" £ "'7" } ,

Let’s write the all good function together!

Memory diagram

O© 00 NO UL WN =

NNNRRRRRRBR R B 2
N P ®© OO NO ULDE WN PO

"""Reviewing dogs' performance in daycare."""

def all_good(scores: list[dict[str, str]], thresh: int, idx: int) -> bool:
"""Determine if all dogs were good in daycare."""
is_good: bool = int(scores[idx]["score"]) >= thresh
is_last: bool = len(scores) == idx + 1

(Let's let Python deal with the edge case(s))
if is_good:
if is_last:
return True
else:
return all_good(scores, thresh, idx + 1)
else:
return False

pack: list[dict[str, strl] = [

{"name": "Nelli", "score": "10"},
{Ilnamell: IIAdaII’ Ilscorell: Ilgll}'
{Ilnamell: IIPipII’ “SCOre”: II7II}'

|
print(all_good(pack, 8, 0))

Visualizing recursive calls to all good

When developing a recursive function:

Base case:

A Does the function have a clear base case?
Ensure the base case returns a result directly (without calling the function again).

3 Will the base case always be reached?

Recursive case;:

A Ensure the function moves closer to the base case with each recursive call.

A Combine returned results from recursive calls where necessary.

A Test the function with edge cases (e.g., empty inputs, smallest and largest valid
inputs, etc.). Does the function account for these cases?

