
More Practice with
Recursive Functions

Reminders:
● Tutoring @5-7PM today and tomorrow
● Virtual review session tomorrow (11/21) at

7pm
○ Link on the site’s agenda!

Welcome to Dog110!

Nelli PipAda

The COMP110 dogs went to daycare and each dog’s behavior was scored on a
scale of 1-10. If all 3 dogs scored at least an 8, we’ll pet them 110 times. Let’s
write a recursive function to see if all dogs in the list were good today!

Welcome to Dog110!
The COMP110 dogs went to daycare and each dog’s behavior was scored on a
scale of 1-10. If all 3 dogs scored at least an 8, we’ll pet them 110 times. Let’s
write a recursive function to see if all dogs in the list were good today!

pack: list[dict[str, str]] = [

 {"name": "Nelli", "score": "10"},

 {"name": "Ada", "score": "9"},

 {"name": "Pip", "score": "7"},

]

3 parameters:
● scores: list[dict[str, str]]

○ list of dictionaries of dogs’ names and scores
● thresh: int

○ Threshold we’re using to determine if a dog
was good

● idx: int
○ Index of dog of interest for the function call

Example usage:

print(all_good(scores=pack, thresh=8, idx=0)) would return False

print(all_good(scores=pack, thresh=7, idx=0)) would return True

all_good Algorithm

Conceptually, what will our base case be?

Let’s write a recursive function to see if all dogs in the list were good today!

Example usage:

print(all_good(scores=pack, thresh=8, idx=0)) would return False

print(all_good(scores=pack, thresh=7, idx=0)) would return True

What will our recursive case be?

What is an edge case for this function? How could we account for it?

Visualizing recursive calls to all_good
all_good(scores=pack, thresh=8, idx=0)

return all_good(scores, thresh, idx + 1)
return all_good(scores, thresh, 1)

returns False

scores[0]["score"] >= thresh. Good dog, Nelli!
 Now, let’s check the next dict in the list…

pack: list[dict[str, str]] = [

 {"name": "Nelli", "score": "10"},

 {"name": "Ada", "score": "9"},

 {"name": "Pip", "score": "7"},

]

thresh = 8
idx = 0

return all_good(scores, thresh, idx + 1)
return all_good(scores, thresh, 2)

return False

scores[2]["score"] < thresh…
not all dogs were good!

return False

return False scores[1]["score"] >= thresh. Good dog, Ada!
 Now, let’s check the next dict in the list…

Values
thresh = 8
idx = 1
thresh = 8
idx = 2

Let’s write the all_good function together!

Memory diagram

Visualizing recursive calls to all_good

When developing a recursive function:

Base case:

❏ Does the function have a clear base case?
❏ Ensure the base case returns a result directly (without calling the function again).

❏ Will the base case always be reached?

Recursive case:

❏ Ensure the function moves closer to the base case with each recursive call.
❏ Combine returned results from recursive calls where necessary.
❏ Test the function with edge cases (e.g., empty inputs, smallest and largest valid

inputs, etc.). Does the function account for these cases?

