
OOP Part 2: Classes
and Methods

1

Warm-up: Complete the Diagram
class Profile:
 username: str
 followers: list[str]
 following: list[str]

 def __init__(self, handle: str):
 self.username = handle
 self.followers = []
 self.following = []

 # Method definitions
 def follow(self, username: str) -> None:
 self.following.append(username)

 def following_count(self) -> int:
 return len(self.following)

my_prof: Profile = Profile("comp110fan")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

We're learning about these today! They are
unused in this diagram, so ignore them.

This argument is passed to the handle
parameter of __init__.

Warm-up: Complete the Diagram
class Profile:
 username: str
 followers: list[str]
 following: list[str]

 def __init__(self, handle: str):
 self.username = handle
 self.followers = []
 self.following = []

 # Method definitions
 def follow(self, username: str) -> None:
 self.following.append(username)

 def following_count(self) -> int:
 return len(self.following)

my_prof: Profile = Profile("comp110fan")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

● Think of a class as a blueprint/
template
○ Defines attributes and behaviors its

objects will have

● Think of a class as a blueprint/
template
○ Defines attributes and behaviors its

objects will have
● An object is an instance of a class

○ E.g., if the class is the blueprint, the
object is the house!

○ Has all the specified attributes and
behaviors

○ Different objects share these
attributes and behaviors, but are
distinct!

But first, a review of classes and objects

4

What does Picasso’s “Bull” progression show?

Pablo Picasso. Bull (1945). A Lithographic Progression.
5

Abstraction: whittling down to the essentials

6

Pablo Picasso. Bull (1945).
A Lithographic Progression.

Real-world example: Flights
What information do you need when
you’re preparing for (or actively on) a
flight?
❏ ALL of the flight details?

❏ E.g., how the pilot flies the plane
or,

❏ Only the ones that are essential for
you to know?
❏ Departure and arrival

times/cities, your seat
assignment, plans after landing

Abstraction: whittling down to the essentials

7

Monday’s example: Instagram Profiles

When you:
❏ Follow someone
❏ Add to your story
❏ Post a new photo
Do you think about what’s happening
behind the scenes (in Meta’s code)?

Objects are a data abstraction

8

All objects have:
1. An internal representation

a. Data attributes
2. An interface for interacting with the

object
a. Interface defines behaviors but

hides implementation (the details!)
b. Methods: Functions defined within a

class
i. self is the first parameter

Methods: defined in the class, called on objects
class Profile:
 username: str
 followers: list[str]
 following: list[str]

 def __init__(self, handle: str):
 self.username = handle
 self.followers = []
 self.following = []

 # Method definitions
 def follow(self, username: str) -> None:
 self.following.append(username)

 def following_count(self) -> int:
 return len(self.following)

my_prof: Profile = Profile("comp110fan") # Calls __init__()

my_prof.follow("unc.latinosintech")
print(my_prof.following_count())

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Method definitions
(first parameter is self)!

Method call
<object>.<method>(<non-self arguments>)

Memory diagram
class Profile:
 username: str
 followers: list[str]
 following: list[str]

 def __init__(self, handle: str):
 self.username = handle
 self.followers = []
 self.following = []

 # Method definitions
 def follow(self, username: str) -> None:
 self.following.append(username)

 def following_count(self) -> int:
 return len(self.following)

my_prof: Profile = Profile("comp110fan")

my_prof.follow("unc.latinosintech")
print(my_prof.following_count())

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Memory Diagram #2

Code writing Following line 18, write additional
lines of code that:

1. Declares an additional variable
of type Point and initializes it to
a new Point object with
coordinates (1.0, 2.0)

2. Call the translate_x method
on your Point object, passing
an argument of 1.0.

3. Print the value returned by
calling the dist_from_origin
method on your Point object.

What would the printed output be?
(This is great additional practice to try
diagramming!)

Class and method writing

● Write a class called Coordinate

● It should have two attributes:

○ x: float and y: float

● Write a constructor that takes three parameters:

○ self, x (float) and y (float)

● Write a method called get_dist that takes as parameters self and other

(another Coordinate object). The method should return the distance

between the two Coordinate objects (use the equation above!).

