Reminders:

Quiz 02 Friday!

Tutoring in Sitterson (SN) 011 from 5-7PM
today (10/23) and tomorrow (10/24)

Virtual review session tomorrow (10/24) @ 7PM
(Zoom link on site’s agenda)

Have a pencil + paper ready for class today!



(OMFP
10 = .

CQO08: Get in tosef coder,
we're going on a road trip!




We're going on a road trip!!!
... but first, we need to rent a car.

We want to avoid a young renter fee, so we
want someone >= 25 to rent it!

Let’'s use code to help us find an eligible renter...



We could use two lists to find someone >= 25:

1l def find car renter (names: list[str], ages: list[int]) -> str:
2 """Find the name of first person who is at least 25"""

3 if len(names) !'= len(ages):

4 raise ValueError ("The length of names and ages must be the same.")
5

6 for idx in range (0, len(ages)):

7 if ages[idx] >= 25:

8 print (names[idx] + " is at least 25!")

9 return names[idx]
10 return "Nobody : ("
11
12
13 names: list[str] = ["Allan", "Ken", "Barbie"]

14 ages: list[int] = [23, 26, 25]
15 driver: str = find car_ renter (names, ages)

Let's diagram it! —



1 def find car renter (names: list[str], ages: list[int])

2 """Find the name of first person >= 25"""
3 if len(names) != len|(ages):

4 raise ValueError ("Different lens")

5

6 for idx in range (0, len(ages)):

7 if ages[idx] >= 25:

8 print (names[idx] + " is over 25")
9 return names[idx]
10 return "nobody : ("
11
12 names: list[str] = ["Allan", "Ken", "Barbie"]

13 ages: list[int] = [23, 26, 25]
14 griver: str = find car renter (names, ages)

Output

-> str:



Why might writing this function with two lists
be suboptimal?

1. Difficult to stay organized
2. Have to update both lists

What should we consider if we want to use a
dictionary?

It feels unfair to tell the first >= 25-year-old we come across to rent the car...

Let’s rewrite this function to return a dict of all people who are >= 25



1l def find car renter(names: list[str], ages: list[int]) -> str:
2 """Find the name of first person who is at least 25"""

3 for idx in range (0, len(ages)):

4 if ages[idx] >= 25:

5 print (names[idx] + " is at least 25!")

() return names[idx]

7 return "nobody"

8

9
10 names = ["Allan", "Ken", "Barbie"]
11 ages = [23, 26, 25]
12 driver = find car renter(names, ages)

Let’s rewrite this function to return a dict of all people who are >= 25!

Write it on paper. Start with...

def find eligible(names: list[str], ages: list[int]) -> dict[str, int]:
"""Find the names and ages of all people old enough to rent a car!"""



def find eligible(names: list[str], ages: list[int]) -> dict[str, int]:
"""Find the names and ages of all people old enough to rent a car!"""



One solution:

1l def find eligible(names: list[str], ages: list[int]) -> dict[str, int]:

2 """Find the names and ages of all people old enough to rent a car!"""
3 if len(names) != len(ages):

4 raise ValueError ("Diff lengths.")

5 eligible ppl: dict[str, int] = {}

6 for idx in range (0, len(names)):

7 if ages[idx] >= 25:

] eligible ppl[names[idx]] = ages[idx]

9 return eligible ppl
10
11 names = ["Allan", "Ken", "Barbie"]
12 ages = [23, 26, 25]
13 renters: dict[str, int] = find eligible(names, ages)

14 print (renters)



After the fact, we realize we don’t want Ken to rent a car...

1l def find eligible(names: list[str], ages: list[int]) -> dict[str, int]:

2 """Find the names and ages of all people old enough to rent a car!"""
3 if len(names) != len(ages):

4 raise ValueError ("Diff lengths.")

5 eligible ppl: dict[str, int] = {}

6 for idx in range (0, len(names)):

7 if ages[idx] >= 25:# If old enough, add to dict

8 eligible ppl[names[idx]] = ages[idx]

9 return eligible ppl

10

11l names = ["Allan", "Ken", "Barbie'"]

12 ages = [23, 26, 25]

13 renters: dict[str, int] = find eligible(names, ages)

14 print (renters)

How could we remove him from renters?



After the fact, we realize we don’t want Ken to rent a car...

1l def find eligible(names: list[str], ages: list[int]) -> dict[str, int]:
2 """Find the names and ages of all people old enough to rent a car!"""
3 if len(names) != len(ages):

4 raise ValueError ("Diff lengths.")

5 eligible ppl: dict[str, int] = {}

6 for idx in range (0, len(names)):

7 if ages[idx] >= 25:# If old enough, add to dict

] eligible ppl[names[idx]] = ages[idx]

9 return eligible ppl

10

1l names = ["Allan", "Ken", "Barbie"]

12 ages = [23, 26, 25]

13 renters: dict[str, int] = find eligible(names, ages)

14 print (renters)

# Let's not let Ken rent a car...
if "Ken" in renters:

renters.pop ("Ken")

print (renters)



oJdJoyU b WDNR

11
12
13
14
15
16
17
18
19
20

def find eligible(names: list[str], ages: list[int]) -> dict[str, int]:

"""Find the names and ages of all people old enough to rent a car!"""
if len(names) != len(ages):

raise ValueError ("Diff lengths.")
eligible ppl: dict[str, int] = {}
for idx in range (0, len (names)):

if ages[idx] >= 25:# If >=25, add to dict

eligible ppl[names[idx]] = ages[idx]

return eligible ppl

names = ["Allan", "Ken", "Barbie"]
ages = [23, 26, 25]
renters: dict[str, int] = find eligible (names, ages)

print (renters)
# Let's not let Ken rent a car...
if "Ken" in renters:

renters.pop ("Ken")

print (renters)



def find eligible(names: list[str], ages: list[int]) -> dict[str, int]:
"""Find the names and ages of all people old enough to rent a car!"""
if len(names) != len(ages):
raise ValueError ("Diff lengths.")
eligible ppl: dict[str, int] = {}
for idx in range (0, len(names)):
if ages[idx] >= 25:# If >=25, add to dict
eligible ppl[names[idx]] = ages[idx]
return eligible ppl
names = ["Allan", "Ken'", "Barbie"]
ages = [23, 26, 25]
renters: dict[str, int] = find eligible(names, ages)
print (renters)

# Let's not let Ken rent a car...
if "Ken" in renters:
renters.pop ("Ken")

print (renters)

Please submit a .pdf of your completed memory
diagram to Gradescope!



