(OMP
110

While Loops

First, Review

Conditionals:
if <something>:

<do something>
else:

<do something else>

<continue program>

True

False

First, Review

Conditionals:
if <something>:

<do something>
else:

<do something else>

<continue program>

Then block

False

Else block

First, Review

Conditionals:
if <something>:

<do something>
else:

<do something else>

<continue program>

Then block

Else block

Block:

. Sequence of :

Statements

Finding the Lowest Card

Low card:

Finding the Lowest Card

2 < 5’? Low card:

Finding the Lowest Card

+
3 < 2? Low card: a

Finding the Lowest Card

5 < 2’? Low card:

Finding the Lowest Card

Finding the low card pseudocode:

1 lowest_card = first card in deck
2 Repeatedly until end of deck:
3 if current_card < lowest_card:

4 lowest_card = current_card

Then block

False

Else block

Finding the Lowest Card

Finding the low card pseudocode:

1 lowest_card = first card in deck
2 Repeatedly until end of deck: fouv;:fs';‘_—c‘;‘:;d <
3 if current_card < lowest_card:

4 lowest_card = current_card False

Then block Else block

Finding the Lowest Card

Finding the low card pseudocode:

1 lowest_card = first card in deck
2 Repeatedly until end of deck:
3 if current_card < lowest_card:

4 lowest_card = current_card

current_card <
lowest_card

lowest _card =
current_card

Else block

Finding the Lowest Card

Finding the low card pseudocode:

1 lowest_card = first card in deck
2 Repeatedly until end of deck:
3 if current_card < lowest_card:

4 lowest_card = current_card

current_card <
lowest_card

lowest _card =
current_card

False

Finding the Lowest Card

Finding the low card pseudocode:

1 lowest_card = first card in deck
2 Repeatedly until end of deck:
3 if current_card < lowest_card:

4 lowest_card = current_card

current_card <
lowest_card

lowest _card =
current_card

False

Loops

e Used to execute statements in a program repeatedly, an arbitrary number of

times
o Asking the computer: “Run this code, over and over, until a certain condition is False”
e Loops as many times as needed (but make sure it’s finite — the loop must end

for the program to continue!)
o “Infinite loop”: a loop that never ends

Loops

e Used to execute statements in a program repeatedly, an arbitrary number of
times

Finding the low card pseudocode:

1 lowest_card = first card in deck m l a n

3 if current_card < lowest_card:

4 lowest_card = current_card

Loops

Loops

i True

Loops

False

Loops

False

“While” Loops

| Repeat while |
I conditionis true |

False

Loops

Finding the low card pseudocode: ;

1 lowest_card = first card in deck

2 Repeatedly until end of deck:
3 if current_card < lowest_card:

i lowest_card = current_card

False

Loops

Finding the low card pseudocode:

1 lowest_card = first card in deck
2 Repeatedly until end of deck:
3 if current_card < lowest_card:

i lowest_card = current_card

lowest _card =
first card in deck

Not at end of
deck?

False

Loops

Finding the low card pseudocode:

1 lowest_card = first card in deck

2 Repeatedly until end of deck:

3
4

if current_card < lowest_card:

lowest_card = current_card

lowest_card =
first card in deck

Not at end of
deck?

current_card <
lowest_card?

lowest_card = current_card

False

False

Syntax

while <condition>:

<repeat action> ;

False

Examples

while counter <=4

<do something>

,l

while emotion == “happy”:

<do something>
while not finished:

<do something>

False

Practice Memory Diagram

1 def loop(stop: int) —> None:

P condition: bool = True

3 num_loops: int = 0@

4 while condition:

5 print(num_loops)

6 num_loops = num_Lloops + 1
7 if num_loops >= stop:

8 | condition = False

9

10 loop(stop=2)

Practice Memory Diagram

1 def characters(msg: str) -> None:
P index: int = 0

3 while index < len(msg):

4 print(msg[index])

5 index = index + 1

6

7

characters(msg="Howdy")

Bonus Lesson: Relative Reassignment Operators

Reassigning a variable relative to its current value: | = i+ 1
Addition reassignment operator shorthand has the same effect: | += 1

Since you will use meaningfully descriptive variable names, this is a big
improvement!

total dollars= total dollars+ next donation vs total dollars+= next donation

N o o s WIN B

def characters(msg: str) —> None:

index: int = 0

while index < len(msg):
print(msg[index])

P gl L e i i -
[

characters(msg="Howdy")

N oo o s, WN R

def characters(msg: str) -> None:

index: int = 0

while index < len(msg):
prlnt(msg[lndex])

______R

characters(msg="Howdy")

Before After

i + expr

expr

expr

expr

expr

i // expr

1 %% expr

