
CL03:
Introduction to Functions



Functions

A function is a sub-program that defines what happens when a function is called.

Lets you generalize problems for different inputs

Help you abstract away from certain processes

Can be: 

● Built-in
● Imported in Libraries
● DIY - Define in your python file



Abstraction Example

● Ordering a pizza…
○ You order a large cheese pizza
○ You don’t need to think about how they make the crust, got the ingredients, how long they 

bake it for, etc.
● round(x)

○ You round 10.25 down to 10 by calling round(10.25)
○ You don’t think about line by line how the some program is making this rounding decision



Calling a Function

Function Call: expressions that result in (“return”) a specific type

Common expressions:
“Making a function call”
“Using a function”
“Invoking a function”

Looks like function_name(<inputs>)

E.g. print(“Hello”) , round(10.25), etc.



Examples…

print()

round()

randint()



Defining Functions

● So far we’ve only used built-in functions or ones imported from other libraries, 
but you can define your own as well!

● Allows you define solutions in one place of your program and reuse them in 
other places of your program file.. and even in other program files!



Function Syntax



Syntax for Calling A Built-In Function

function_name(<argument list>)



Syntax for Calling A Built-In Function

function_name(<argument list>)

print(“hello”)

round(10.25)

randint(1,7)

randint(1,2+5)



Syntax for Defining A Function

def function_name(<parameter list>) -> <return type>:

“““Docstring describing function”””

<what your function does>



Syntax for Defining A Function

def function_name(<parameter list>) -> <return type>:

“““Docstring describing function”””

<what your function does>
Generic inputs that you 
want your function to use
(not specific values)



Syntax for Defining A Function

def function_name(<parameter list>) -> <return type>:

“““Docstring describing function”””

<what your function does>
If your function returns something, 
this will be its type.
(You always return objects using 
the return keyword)



Syntax for Defining A Function

def function_name(<parameter list>) -> <return type>:

“““Docstring describing function”””

<what your function does>

Practice: Write a function called sum 
that takes two ints: num1 and num2 as inputs

and returns the sum of the two numbers.



function name parameter list return type



signature



Syntax for Calling A Defined Function

function_name(<parameter0> = <arg0>, <parameter1> = <arg1>, …)

sum(num1 = 11, num2 = 3)



Call vs. Signature

Signature (for defining a function) :

def function_name(<parameter list>) -> <return type>:

def sum(num1: int, num2: int) -> int:

Call (for calling a function):
function_name(<parameter0> = <arg0>, <parameter1> = <arg1>, …)

sum(num1 = 11, num2 = 3)



Call vs. Signature

def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)



def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)

Call vs. Signature



def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)

Call vs. Signature



def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)

Call vs. Signature

“arguments”

“parameters”



def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)

Call vs. Signature

(evaluates to an int)


