
You can join the waitlist for
COMP 110 (Section 004)!

Enrolled or on
waitlist?

Welcome to

Not enrolled or
on waitlist?

Today’s Goals

Introductions

What is the course about?

What are the instructional and workload expectations?

Logistics?

Homework

An Introduction to Coding

About me (Dr. Isabella (“Izzi”) Hinks)

● Originally from Apex, NC
● Undergrad at UNC!
● COMP110 student → UTA

me

me

About me (Dr. Isabella (“Izzi”) Hinks)

● Originally from Apex, NC
● Undergrad at UNC!
● COMP110 student → UTA → work, grad school… → Professor
● PhD @ NC State University

Your UTA Team!

• This course would be impossible for all of us, if not for them
• THE absolute best UTA team at Carolina. You will 💙 them
• This team can do it all: they’ll help teach you concepts

you’re struggling with, guide review sessions, create study
guides, build exercises, and more

• You will be assigned 2x UTAs who are your personal leads
• Drop-in, in-person office hours will be available to you for

over 36 hours per week starting Monday!

TA’s coding experience before taking COMP110

● Who is new to Carolina?
● Who is coming into this course with no

programming experience?
○ A little experience?
○ A lot?

● Who is not majoring in computer science?
○ Who is (or is considering it)?

You are a capable and diverse group!

Zero Programming Experience Expected
● This course assumes no prior programming

experience
○ (But some experience is OK!)

● COMP110 is a rigorous introduction to
programming
○ 3 hours of lecture/lessons per week
○ and ~9 hours of practice/coursework

Open House this Tuesday – Friday

• 12-5 pm
• Sitterson Hall (SN) - Go

downstairs to SN008
• Get help installing course

software!
• Introduce yourself and meet

some great people on the team!

SN 008

Course Objectives

● You will learn the fundamentals of programming
○ Using common tools and techniques used by software engineers
○ Universal concepts that apply to nearly all programming languages
○ You will leave knowing what it feels like to be a programmer

● You will gain practice with computational thinking
○ Thinking algorithmically while breaking down problems step-by-step
○ Thinking at varying levels of abstraction by describing problems &

solutions abstractly and precisely
● Full curriculum linked in syllabus!

Course Website
https://comp110-24f.github.io/

(Syllabus is on there!)

https://comp110-24s.github.io/

Grading Breakdown

● Prepare:
○ 10% – (LS) Lesson Responses: Mult. choice re: basic concepts

● Practice:
○ 10% – (CQ) Challenge Questions: Short-form coding questions
○ 30% – (EX) Programming Exercises: Long-form coding projects

● Demonstrate Mastery:
○ 40% – (QZ) 5x Quizzes: Paper and pencil
○ 10% – (FN) Final Exam: Paper and pencil

Quizzes

Quizzes are in person, with pencil and paper, during
your section's lecture time. You are only permitted to
be absent for one quiz.

NO MAKEUPS!

All dates are online!
For full policies, see syllabus.

CQs, Exercises, + Autograding
• You can re-submit to the autograder without penalty before the due date

• If you do not get full credit, stop and think about what might be causing a test to
fail. Try again!

• Be careful to avoid a frustrating loop of "tweak one small thing, resubmit, tweak
one small thing, resubmit, ..."

1. The autograder gives you feedback – see if you can reproduce the error!
2. If you find yourself stuck in this loop, stop by office hours (SN 008)

Use of AI

● AI tools like ChatGPT can be very useful in programming, but it takes a

trained eye to use them properly!

● In this class, you are training your eyes to learn the fundamentals, so

using AI will only hinder your understanding and won’t strengthen you as

a programmer!

● Considered a violation of the honor code.

Programming is a Practiced Skill
• Like playing an instrument, painting, writing cursive letters,
dancing, singing, sports, wood working, quilting, and so on....
Time spent individually practicing is the key to
success.

• This is very different from courses that are knowledge-based!
• The team and I want you to succeed in learning how to program,
so we structure everything we do toward helping you practice
individually.

• Know what every line of your code is doing!

How do you believe programming will be
valuable toward achieving your personal goals?

Why are you in this course?

Think for a minute, introduce yourself to your
neighbor(s) and discuss, then we'll share.

Office Hours
● Official Office Hours begin Monday, Aug 26
● Hours are on the website
● We use Course.Care (sign up info on website under “resources”!)
● General Rules:

○ Must submit a ticket to be seen
○ Limited to 15 minutes and one specific question per appointment
○ Completely lost? Try tutoring!

https://course.care/

Office Hours Check-in Process - Starting MONDAY (8/26)

Click "Get Help" on the course home page

Click Here!

110

Click Here!

Office Hours Check-in Process

You can see how many people are currently
being helped waiting to be helped.

Select
One!

Office Hours Check-in Process

Office Hours Check-in Process

Fill In

IMPORTANT: You must
demonstrate effort and
thought in these fields. If
you do not, the TAs are
instructed to cancel your
request so you can try
again.

Office Hours Check-in Process

Office Hours Check-in Process

Tutoring
● Best for longer-form help (> 15 mins) and conceptual questions
● Official days/times will be announced on the course site

Feedback + Help

Feedback is always welcome!

For help, you can post your questions on EdStem or email
comp110help@gmail.com

CL01: An Introduction to
Coding

Computational Thinking

● Strategic thought and problem-solving
● Can help perform a task better, faster, cheaper, etc.
● Examples:

○ Meal prepping
○ Making your class schedule
○ “Life Hacks”

Algorithms

Input is data given to an algorithm

An algorithm is a series of steps

An algorithm returns some result

An algorithm may be influenced by
its environment and it may
produce side-effects which
influence its environment.

Example: Self-driving cars

Algorithm

What is an algorithm?

● A set of steps to solve a general problem
● Finite
● Can handle a problem of arbitrary size

Discussion

What are examples of computational thinking that you use day to day?

What kind of algorithms do you use to implement these ideas?

Finding the Lowest Card in a Deck

● Go from left to right
● Remember the lowest card you’ve seen so far and compare it to the next

cards

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:2 < 5?

Finding the Lowest Card

Low card:3 < 2?

Finding the Lowest Card

Low card:5 < 2?

Finding the Lowest Card

Low card:5 < 2?
Relational
Operator

Pseudocode

Looks like code, but simplified and readable.

Not meant to run on a computer.

Helps you outline what your algorithm is
going to look like.

You should be able to expand on your
pseudocode to help you write actual code!

If (going to hit stuff):
dont()

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Assignment

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_card

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_card

Loop

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_cardConditional

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_cardRelational
Operator

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

find_lowcard(deck)

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_card

Function

Takeaways

● Pseudocode: simple and readable version of algorithm that resembles code

● Assignment Operator: Assigns a variable some value

● Loop Statement: Repeatedly performs an action a fixed number of times

● Relational Operator: Compares two values

● Conditional Statement: A statement that only performs an action under certain conditions

● Function: Generalizes code to work for a generic input

Again, you don’t need to know these right now, but I want you to have a point of reference when

you do learn them!

Homework!
● Read Syllabus and Support on Course Page

● Respond to Lesson 00 (LS00) Gradescope Questions

○ Due Wednesday at 11:59pm

● Course Setup + EX00 (due August 27 at 11:59pm)

○ Come to open house for help!

